1.)

a.

Question: Construct from first principles the hamiltonian fore a 1D harmonic oscillator of mass m and spring constant k.

The kinetic energy is given by:

$$
T=\frac{1}{2} m \dot{q}^{2}
$$

While the potential energy is:

$$
U=\frac{1}{2} k q^{2}
$$

As we know. $L=T-U$ and $H=p \dot{q}-L$, leading to:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2} \tag{1}
\end{equation*}
$$

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega q^{2}
$$

b.

Question: Determine the constant C such that $Q=C(p+i m \omega q)$ and $P=$ $C(p-i m \omega q)$ define a canonical transformation.

There are multiple ways to show that a transformation is canonical, here I use the fact that Poisson brackets are conserved on canonical transforms.

$$
\begin{gathered}
{[p, q]=[P, Q]} \\
{[p, q]=\frac{\partial p}{\partial q} \frac{\partial q}{\partial p}-\frac{\partial q}{\partial q} \frac{\partial p}{\partial p}=-1} \\
{[P, Q]=\frac{\partial P}{\partial q} \frac{\partial Q}{\partial p}-\frac{\partial Q}{\partial q} \frac{\partial P}{\partial p}=(-i m \omega C) C-C(i m \omega C)=-2 i m \omega C^{2}}
\end{gathered}
$$

So we have:

$$
\begin{aligned}
& -2 i m \omega C^{2}=-1 \\
& C=\sqrt{\frac{1}{2 i m \omega}}
\end{aligned}
$$

c.

Question: What is the generating function $S(q, P)$ for this transformation? We have, by definition:

$$
\begin{align*}
& p=\frac{\partial S(q, P, t)}{\partial q} \tag{2}\\
& Q=\frac{\partial S(q, P, t)}{\partial P} \tag{3}
\end{align*}
$$

So we can write:

$$
\begin{gather*}
p=i m \omega q+\frac{P}{C}=\frac{\partial S}{\partial q} \\
S=\int\left(i m \omega q+\frac{P}{C}\right) d q=\frac{P q}{C}+\frac{i m \omega}{2} q^{2}+g(P) \tag{4}
\end{gather*}
$$

Where $g(P)$ is some function depending only on P. Taking the derivative of Eq 4 with respect to P

$$
\frac{\partial S}{\partial P}=\frac{q}{c}+\frac{d g}{d P}
$$

And we know that the above should be equal to Q by Eq 3. So:

$$
\begin{gather*}
\frac{q}{c}+\frac{d g}{d P}=C\left(2 i m \omega q+\frac{P}{C}\right) \\
\frac{d g}{d P}=\frac{q}{C}-\frac{q}{C}+P \\
g(P)=\frac{1}{2} P^{2} \tag{5}
\end{gather*}
$$

Finally, putting it all together:

$$
S(q, P)=\frac{1}{2} P^{2}+\frac{q P}{C}+\frac{q^{2}}{4 C^{2}}
$$

d.

Question: Find Hamilton's equations of motion for the new variables
We know that our new Hamiltonian, $\tilde{H}(Q, P, t)$, if related to our coordinates P and Q by:

$$
\begin{align*}
\dot{Q} & =\frac{\partial \tilde{H}}{\partial P} \tag{6}\\
\dot{P} & =-\frac{\partial \tilde{H}}{\partial Q} \tag{7}
\end{align*}
$$

But we can write \dot{Q} and \dot{P} as:

$$
\begin{align*}
\dot{Q} & =C(\dot{p}+i m \omega \dot{q}) \tag{8}\\
\dot{P} & =C(\dot{p}-i m \omega \dot{q}) \tag{9}
\end{align*}
$$

and using our hamiltonian, $H(q, p, t)$ to derive \dot{q} and \dot{p} :

$$
\dot{Q}=C\left(-m \omega^{2} q+i m \omega \frac{p}{m}\right)=C i \omega(p+i m \omega q)=i \omega Q
$$

Thus we can integrate the above equation to arrive at:

$$
\begin{equation*}
\tilde{H}(Q, P, t)=i \omega Q P+g(Q) \tag{10}
\end{equation*}
$$

where again $g(Q)$ is some function depending only on Q. Switching over to \dot{P} :

$$
\begin{gathered}
\dot{P}=C(\dot{p}-i m \omega \dot{q})=-i \omega P=-\frac{\partial \tilde{H}}{\partial Q} \\
-\frac{\partial \tilde{H}}{\partial Q}=-i \omega P+\frac{\partial g}{\partial Q}
\end{gathered}
$$

Thus $g(Q)=0$ and we can see that our new Hamiltonian is given by:

$$
\tilde{H}(Q, P, t)=i \omega Q P
$$

Using this Hamiltonian, we can trivially see that:

$$
\begin{gathered}
\dot{P}=-i \omega P \\
\dot{Q}=i \omega Q
\end{gathered}
$$

We can integrate these equations to find:

$$
\begin{gather*}
Q(t)=Q_{0} \exp \left(i \omega t+\phi_{1}\right) \tag{11}\\
P(t)=P_{0} \exp \left(-i \omega t+\phi_{2}\right) \tag{12}
\end{gather*}
$$

or, substituting in for our original coordinates:

$$
\begin{gather*}
p(t)=\frac{1}{C}\left[Q_{0} \exp \left(i \omega t+\phi_{1}\right)+P_{0} \exp \left(-i \omega t+\phi_{2}\right)\right] \tag{13}\\
q(t)=\frac{1}{2 i m \omega C}\left[Q_{0} \exp \left(i \omega t+\phi_{1}\right)-P_{0} \exp \left(-i \omega t+\phi_{2}\right)\right] \tag{14}
\end{gather*}
$$

Fetter \& Walecka 6.7

- canonical transformation $q_{\sigma}, p_{r} \rightarrow Q_{\sigma}, P_{\sigma}$ presents Hamilton's equations:

$$
\Rightarrow \dot{Q}_{\sigma}=\frac{\partial \tilde{H}}{\partial P_{\sigma}},-\dot{P}_{\sigma}=\frac{\partial \tilde{H}}{\partial Q_{\sigma}}
$$

where \tilde{H} is the new Hamiltonian in terms of the new generalized coordinates and momenta.

- require:

$$
\delta \int_{t_{1}}^{t_{2}} d t\left\{p_{\sigma} \dot{q}_{\sigma}-H(q, p, t)\right\}=0=\delta \int_{t_{1}}^{t_{2}} d t\left\{p_{\sigma} \dot{Q}_{\sigma}-\tilde{H}\left(Q_{1} P, t\right)\right\}
$$

\rightarrow satisfied and phase-space volumes preserved when
(*)

$$
p_{\sigma} \dot{q}_{\sigma}-H(q, p, t)=P_{\sigma} \dot{Q}_{r}-\tilde{H}\left(Q_{1}, p, t\right)+\frac{d F}{d t}
$$

where F is the generating function

- fir function $F_{2}\left(q_{1} P, t\right)$ we have $F=F_{2}\left(q_{1} P, t\right)-P_{\sigma} Q_{r} \quad$ (type 2 generating func.)

$$
\begin{aligned}
\Rightarrow \frac{d F}{d t} & =\frac{\partial F}{\partial q} \dot{q}+\frac{\partial F}{\partial P} \dot{P}+\frac{\partial F}{\partial Q} \dot{Q}+\frac{\partial F}{\partial t} \\
& =\sum_{\sigma}\left(\frac{\partial F_{2}}{\partial q_{1}} \dot{q}_{\sigma}+\frac{\partial F_{2}}{\partial P_{\sigma}} \dot{P}_{\sigma}-Q_{\sigma} \dot{P}_{\sigma}-P_{\sigma} \dot{Q}_{\sigma}\right)+\frac{\partial F}{\partial t}
\end{aligned}
$$

\rightarrow equation (*) can thus be written as

$$
\sum_{\sigma}\left[\left(p_{\sigma}-\frac{\partial F_{2}}{\partial q_{\sigma}}\right) \dot{q}_{\sigma}+\left(Q_{\sigma}-\frac{\partial F_{2}}{\partial P_{r}}\right) \dot{P}_{\sigma}\right]-H\left(q_{1} p_{1} t\right)=-\tilde{H}\left(Q_{1} P_{1} t\right)+\frac{\partial F_{2}}{\partial t}
$$

\Rightarrow need

$$
P_{\sigma}-\frac{\partial F}{\partial q_{\sigma}}=0, \quad Q_{\sigma}-\frac{\partial F_{2}}{\partial P_{\sigma}}=0 \Rightarrow P_{\sigma}=\frac{\partial F_{2}}{\partial q_{\sigma}}, Q_{\sigma}=\frac{\partial F_{2}}{\partial P_{\sigma}}
$$

so that

$$
\tilde{H}(Q, P, t)=H(q, p, t)+\frac{\partial F_{2}}{\partial t}
$$

2. a) want to show

$$
S_{0}(q, P)=\sum_{\sigma} q_{r} P_{\sigma}
$$

generates the identity transformation

- So (q, P) is a type 2 generating function

$$
\begin{aligned}
\Rightarrow P_{\sigma} & =\frac{\partial F_{2}}{\partial q_{\sigma}}=P_{\sigma} \\
Q_{\sigma} & =\frac{\partial F_{2}}{\partial P_{r}}
\end{aligned}=q_{\sigma}>q_{\sigma}=Q_{r}, P_{\sigma}=P_{\sigma}
$$

b) want to show the function $S_{0}+H$ de generates the dynamical transformation from t to $t+d t$

- let $G=S_{0}+H d t=\sum_{r} q_{r} P_{r}+H d t$
- again G is a type 2 generating function, so

$$
\begin{aligned}
p_{\sigma}=\frac{\partial G}{\partial q_{r}}= & P_{\sigma}+\frac{\partial H}{\partial q_{r}} d t \\
= & P_{\sigma}-\dot{P}_{\sigma} d t \Rightarrow P_{\sigma}=p_{\sigma}+p_{\sigma} d t \\
& P_{\sigma}=P_{\sigma}(t+d t)
\end{aligned}
$$

Hamiltoris Equations:

$$
\dot{q}_{\sigma}=\frac{\partial H}{\partial p_{r}},-\dot{p}_{\sigma}=\frac{\partial H}{\partial q_{\sigma}}
$$

\leftarrow new momenta are the old momenta evaluated at time $t+d t$

$$
\begin{aligned}
Q_{r}=\frac{\partial G}{\partial P_{r}} & =q_{r}+\frac{\partial H}{\partial P_{r}} d t \\
& \approx q_{r}+\frac{\partial H}{\partial p_{r}} d t \\
& =q_{r}+\dot{q}_{r} d t \\
Q_{\sigma} & =q_{r}(t+d t)
\end{aligned}
$$

$$
\approx q_{\sigma}+\frac{\partial H}{\partial p_{r}} d t \quad \frac{\partial H}{\partial P_{r}}-\frac{\partial H}{\partial p_{r}} \text { since } P_{0}=p_{\sigma}(t+d t)
$$

\leftarrow new coordinates are the old coordinates evaluated at time $t+d t \geqslant$
\Rightarrow Since we have shown that this generating function produces new coordinates and momenta satisfying $Q_{r}=q_{0}(t+d t)$ and $P_{F}=p_{r}(t+d t)$, the time development of any mechanical system most always be a canonical transformation.

PHYS 200 B Winter 2014

$$
H W \neq 3 \text { Problem } \# 3
$$

3) Fetter and walecka 6.8

Let $G=S_{0}+P \cdot d r$

$$
\begin{aligned}
G & =\sum q_{\sigma} P_{\sigma}+\sum P_{\sigma} d q_{\sigma} \\
\frac{d G}{d t} & =\sum\left(\dot{q}_{\sigma} P_{\sigma}+q_{\sigma} \dot{P}_{\sigma}\right)+\sum \dot{P}_{\sigma} d q_{\sigma}
\end{aligned}
$$

Since this is a type II generating function we define:

$$
F=G-\sum P_{\sigma} Q_{\sigma}
$$

Canonical transformations satisfy the following equation:

$$
\begin{aligned}
& \sum p_{\sigma} \dot{q}_{\sigma}-H=\sum P_{\sigma} \dot{Q}_{\sigma}-\tilde{H}+\frac{d F}{d t} \\
& \sum \rho_{\sigma} \dot{q}_{\sigma}-H=\sum P_{\sigma} \dot{Q}_{\sigma}-\bar{H}+\frac{d G}{d t}-\sum \dot{P}_{\sigma} Q_{\sigma}-\sum P_{\sigma} \dot{Q}_{\sigma} \\
& \sum \rho_{\sigma} \dot{q}_{\sigma}-H=-\sum \dot{P}_{\sigma} Q_{\sigma}-\tilde{H}+\frac{d G}{d t} \\
& \sum \rho_{\sigma} \dot{q}_{\sigma}-H=-\sum \dot{P}_{\sigma} Q_{\sigma}-\tilde{H}+\sum\left(\dot{q}_{\sigma} P_{\sigma}+q_{\sigma} \dot{P}_{\sigma}\right)+\sum \dot{P}_{\sigma} d_{q_{\sigma}} \\
& \sum(\underbrace{\left.\rho_{\sigma}-P_{\sigma}\right)}_{=0} \dot{q}_{\sigma}-H=\sum(\underbrace{\left.-Q_{\sigma}+q_{\sigma}+d q_{\sigma}\right)}_{=0} \dot{P}_{\sigma}-\tilde{H}
\end{aligned}
$$

(1)

$$
\begin{gathered}
\Rightarrow \quad p_{\sigma}-P_{\sigma}=0 \\
P_{\sigma}=p_{\sigma}
\end{gathered}
$$

(2)

$$
\begin{gathered}
\Rightarrow-Q_{\sigma}+q \sigma+d q \sigma=0 \\
Q_{\sigma}=q \sigma+d q \sigma
\end{gathered}
$$

$\Rightarrow \quad p=\rho$

$$
\left.Q=\frac{q}{f}+d s\right\}
$$

3) Fetter and walecka 6.8 continued

Let

$$
\begin{aligned}
G & =S_{0}+\hat{n} \cdot L d \varphi \quad L=q_{\sigma} \times \rho \\
G & =\sum q_{\sigma} P_{\sigma}+n_{k} \epsilon_{j} k q_{i} P_{j} d \varphi \\
\frac{d G}{d t} & =\sum\left(\dot{q}_{\sigma} P_{\sigma}+q_{\sigma} \dot{P}_{\sigma}\right)+n_{k} \in \sigma_{j k} \dot{q}_{\sigma} P_{j} d \varphi+n_{k} \in i \sigma k q_{i} P_{\sigma} d \varphi
\end{aligned}
$$

Since this is a type II generating function we define:

$$
F=G-\sum P_{\sigma} Q_{\sigma}
$$

Canonical transformations satisfy the following equation:

$$
\begin{aligned}
& \sum \rho_{\sigma} \dot{q} \sigma-H=\sum P_{\sigma} \dot{Q}_{\sigma}-\tilde{H}+\frac{d F}{d t} \\
& \sum p_{\sigma} \dot{q}_{\sigma}-H=\sum P_{\sigma} \dot{Q}_{\sigma}-\tilde{H}+\frac{d h}{d t}-\sum \dot{P}_{\sigma} Q_{\sigma}-\sum P_{\sigma} \dot{Q}_{\sigma} \\
& \sum p_{\sigma} \dot{q}_{\sigma}-H=-\sum \dot{p}_{\sigma} Q_{\sigma}-\widetilde{H}+\frac{d G}{d t} \\
& \sum p_{\sigma} \dot{q}_{\sigma}-H=-\sum \dot{p}_{\sigma} Q_{\sigma}-\bar{H}+\sum\left(\dot{q}_{\sigma} P_{\sigma}+q_{\sigma} \dot{p}_{\sigma}\right)+n_{K} \in \sigma j k \dot{q}_{\sigma} P_{j} d \phi \\
& +n_{k} \epsilon_{i \sigma k} q_{i} \dot{p}_{\sigma} d \varphi_{\text {. }} \\
& \sum(\underbrace{\left.\rho_{\sigma}-p_{\sigma}-n_{k} \epsilon_{\sigma j k} P_{j} d \varphi\right)}_{=0(1)} \dot{q}_{\sigma}-H=\sum(\underbrace{\left(-Q_{\sigma}+q_{\sigma}+n_{k} \epsilon_{i \sigma k} q_{i} d \varphi\right.}_{=0 \quad(2)}) p_{\dot{p}}-\tilde{H}
\end{aligned}
$$

$$
\begin{aligned}
(2) \Rightarrow & -Q_{\sigma}+q_{\sigma}+n_{K} \epsilon i \sigma k q_{i} d q=0 \\
& Q_{\sigma}=q_{\sigma}+n_{k} \epsilon_{i \sigma} k q_{i} d \varphi \\
& Q_{\sigma}=q_{\sigma}+\epsilon_{k i \sigma} n_{K} q_{i} d \varphi \\
& Q_{\sigma}=q_{\sigma}+\left[\hat{n} \times q_{\sigma}\right]_{\sigma} d \varphi
\end{aligned}
$$

3) Fetter and walecka 6.8 continued
(1)

$$
\begin{aligned}
\Rightarrow \quad p_{\sigma} & =P_{\sigma}-n k \in \epsilon_{j} P_{j} d \varphi=0 \\
P_{\sigma} & =p \sigma-\epsilon \sigma j k n k P_{j} d \varphi \\
P_{\sigma} & =p \sigma+\epsilon n_{j} \sigma n_{k} P_{j} d \varphi \\
P_{\sigma} & =p^{2 \sigma}+\left[\hat{n} \times P_{\sigma}\right]_{\sigma} d \varphi
\end{aligned}
$$

This equation can be written as $p_{\sigma}=p_{\sigma}+\theta(d q)$ which indicates that replacing $P r$ with $p \sigma$ introduces error on the order of $\theta(d \varphi)$

$$
\Rightarrow p_{\sigma}=p \sigma+\left[\hat{n} \times p^{p}\right]_{\sigma} d \phi+\theta\left(d \phi^{2}\right)
$$

we ignore the $\theta\left(d \phi^{2}\right)$ terms

$$
\begin{aligned}
& P_{\sigma}=R^{\sigma}+[\hat{n} \times \underline{p}] \sigma d \varphi \\
& \Rightarrow Q=q+[\hat{n} \times q] d \varphi \quad \text { Finite } \\
& \mathcal{L}=\frac{\rho}{f}+[\hat{n} \times \rho] d \rho \quad \text { Rotations }
\end{aligned}
$$

Fetter and Walecka 6.17
a)

$$
\begin{aligned}
& G=\sum_{\sigma} q_{\sigma} P_{\sigma}+\epsilon h\left(q_{r}, p_{\sigma}, t\right) \\
& \frac{d h}{d t}=\sum_{r}\left(i_{\sigma} p_{\sigma}+\dot{q}_{\sigma} \dot{p}_{\sigma}\right)+\epsilon \frac{\partial h}{\partial q_{r}} \dot{q}_{r}+\epsilon \frac{\partial h}{\partial p_{\sigma}} \dot{p}_{\sigma}+\epsilon \frac{\partial h}{\partial t}
\end{aligned}
$$

Sine this is type II tonstornation let $F=G-\sum P_{\sigma} Q_{\sigma}$
Comical troustormation must satisfy:

$$
\begin{aligned}
& \sum \text { Prim }_{\sigma}-H=\sum P_{r} \dot{Q}_{r}-\bar{H}+\frac{d F}{d t} \\
& \sum p_{\sigma} \dot{q}_{r}-H=\sum P_{\sigma} \dot{Q}_{\sigma}-\hat{H}+\frac{d G}{d t}-\sum \dot{P}_{\sigma} Q_{\sigma}-\sum P_{\sigma} \dot{Q}_{\sigma} \\
& \sum p_{p \sigma \sigma}-H=-\sum \dot{p}_{\sigma} Q_{\sigma}-\hat{H}+\sum\left(\dot{q}_{\sigma} p_{\sigma}+g_{\sigma} \dot{p}_{\sigma}\right)+\epsilon \frac{\partial h}{\partial g \sigma} \dot{q}_{\sigma}+\epsilon \frac{\partial h}{\partial p_{\sigma}} \dot{p}_{\sigma}+\epsilon \frac{\partial h}{\partial t} \\
& \sum(\underbrace{\left.2 \sigma-P_{\sigma}-\epsilon \frac{\partial h}{\partial j_{\sigma}}\right)}_{0(1)} \underbrace{2 \sigma}_{0}-H=\sum(\underbrace{-Q_{\sigma}+q_{\sigma}+\epsilon \frac{\partial h}{\partial P_{\sigma}}}_{0}) \dot{p}_{\sigma}-\tilde{H}+\epsilon \frac{\partial h}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
(1) \Rightarrow p_{\sigma} & -P_{\sigma}-\epsilon \frac{\partial h}{\partial q_{\sigma}}=0 \\
P_{r} & =p_{\sigma}-\epsilon \frac{\partial}{\partial q_{\sigma}} G\left(q_{\sigma}, P_{\sigma}, t\right) \\
P_{r} & =p_{\sigma}-\epsilon \frac{\partial}{\partial q \sigma} G\left(q_{r}, q_{\sigma}, t\right)+\theta\left(\epsilon^{2}\right)
\end{aligned} \quad \begin{aligned}
& \text { Replacing } P_{\sigma} \text { with } p_{\sigma} \text { in } \\
& G \text { introduces error of } \theta\left(\epsilon^{2}\right.
\end{aligned}
$$

$$
(2) \Rightarrow Q_{\sigma}=q_{\sigma}+\epsilon \frac{\partial}{\partial P_{\sigma}} G\left(q_{r}, P_{\sigma, t}\right)
$$

Replacing Po with go in G introduces error of $\theta\left(\epsilon^{2}\right)$

$$
\begin{aligned}
& Q_{\sigma}=q_{\sigma}+\epsilon \frac{\partial q_{\sigma}}{\partial p_{\sigma}} \frac{\partial}{\partial p_{\sigma}} G\left(q_{\sigma}, p_{\sigma}, t\right)+\theta\left(\epsilon^{2}\right)^{2} \\
& Q_{\sigma}=q_{\sigma}+\epsilon(1+\theta(\epsilon)) \frac{\partial}{\partial g_{\sigma}} G\left(q_{\sigma}, q_{\sigma}, t\right)+\theta\left(\epsilon^{2}\right) \\
& Q_{\sigma}=q_{\sigma}+\epsilon \frac{\partial}{\partial p_{\sigma}} G\left(q_{\sigma}, p_{\sigma}, t\right)+\theta\left(\epsilon^{2}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& F \rightarrow F+d F \\
& d F=\frac{\partial F}{\partial q_{\sigma}} d q_{\sigma}+\frac{\partial F}{\partial q^{\sigma}} d p_{\sigma}
\end{aligned}
$$

From the cosmical transformation we have, to frost order in ϵ :

$$
\begin{aligned}
& d q \sigma=\epsilon \frac{\partial G}{\partial q_{\sigma}}, \quad d p_{\sigma}=-\epsilon \frac{\partial G}{\partial q \sigma} \\
& d F=\epsilon \frac{\partial F}{\partial q \sigma} \frac{\partial G}{\partial \rho_{\sigma}}-\epsilon \frac{\partial F}{\partial p_{\sigma}} \frac{\partial h}{\partial q \sigma} \\
& d F=\epsilon[F, G]_{p B}
\end{aligned}
$$

c) Under this transformations we have

$$
\begin{aligned}
& H(q \sigma, p \sigma) \rightarrow H(q \sigma, p \sigma)+d H \\
& H(q \sigma, p \sigma) \rightarrow H\left(q_{\sigma}, p \sigma\right)+\epsilon[H, G]_{p B}
\end{aligned}
$$

If G is a constant of motion then $\frac{\partial h}{\partial q \sigma}=\frac{\partial h}{\partial \rho_{\sigma}}=0 \Rightarrow[H, G]_{P B}=0$

$$
H(q \sigma, p \sigma) \rightarrow H(q \sigma, p \sigma)
$$

Therefore the Hamiltonian is invariant under this trousformation.
5. Sol:
a) We choose the third generating function

$$
\begin{aligned}
& q=-\frac{\partial F_{3}(p, Q)}{\partial p} \quad p=-\frac{\partial F_{3}}{\partial Q}=g(p) \\
& \therefore \quad F_{3}=-g(p) Q \\
& q=-\frac{\partial F_{3}}{\partial p}=\rho^{\prime}(p) Q
\end{aligned}
$$

generating function: $F_{3}=-g(p) Q$ type 3 generator transformation rule: $\quad P=B(P)$,

$$
Q=a / g^{\prime}(p)
$$

To prove the phase space volume is invariant, we only need to verify the determinant of Jacobi Matrix is 1
i.e $\quad \operatorname{det}\left|\frac{\partial \varepsilon_{i}}{\partial \Lambda_{j}}\right|=1$

$$
\begin{aligned}
& \frac{\partial Q}{\partial q}=\frac{1}{g(p)} \quad \frac{\partial Q}{\partial p}=-\frac{q g^{\prime \prime}(p)}{\left(g^{\prime}(p)\right)^{2}} \quad \frac{\partial P}{\partial q}=0 \quad \frac{\partial P}{\partial p}=g^{\prime}(p) \\
& \therefore \quad \operatorname{det}\left|\frac{\partial \varepsilon_{i}}{\partial \Lambda_{j}}\right|=\frac{1}{g^{\prime}(p)} \cdot g^{\prime}(p)-0=1 \quad \text { Q.E.D }
\end{aligned}
$$

b) Under canonical transformation, principle of least action should still hods. ie. $\delta \int_{t_{1}}^{i_{1}^{2}(p i d-H)}=\delta \int_{t_{1}}^{i_{2}} d t(P \dot{Q}-\tilde{H})$
which means $p \dot{q}-H=P \dot{Q}-\tilde{H}+\frac{d F}{d t}$

$$
\therefore \quad \ddot{H}=H+p \dot{Q}-p \dot{q}+\frac{\partial F}{\partial p} p+\frac{\partial F}{\partial q} \dot{q}+\frac{\partial F}{\partial p} \dot{p}+\frac{\partial F}{\partial Q} \dot{Q}+\frac{\partial F}{\partial t}
$$

where $-p=\frac{\partial F}{\partial a}+p=\frac{\partial F}{\partial q} \quad \frac{\partial F}{\partial p}=\frac{\partial F}{\partial p}=0$
then $\quad \vec{H}=H+\frac{\partial F}{\partial t}$

$$
\therefore \quad \frac{-\partial \vec{H}}{\partial Q}=-\frac{\partial}{\partial t}\left(\frac{\partial F}{\partial Q}\right)=+\dot{P} \quad G \cdot E \cdot D
$$

6. $\quad A=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+\frac{1}{2} k q_{1}^{2}+\frac{1}{2} k_{2} q_{2}^{2}+\frac{1}{2} k_{3} q_{3}^{2}=E$

Seperate the eqn.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{1}{2 m} P_{1}^{2}+\frac{1}{2} k_{1} q_{2}^{2}=E_{1} \\
\frac{1}{2 m} P_{2}^{2}+\frac{1}{2} k_{2} q_{2}^{2}=E_{2} \\
\frac{1}{2 m} P_{3}^{2}+\frac{1}{2} k_{3} q_{3}^{2}=E_{3}
\end{array} \quad \sum_{i=1}^{3} E_{i}=E \quad P_{i}=\sqrt{2 m}\left(E_{i}-\frac{1}{2} k_{i} q_{i}^{2}\right)^{1 / 2}\right. \\
& I_{i}=\frac{1}{2 \pi} \phi p_{i} d q_{i} \\
& =\frac{\bar{E}_{2}}{2 \pi} \oint\left(E_{i}-\frac{1}{2} k q_{i}^{2}\right)^{2 / 2} d q_{i} \\
& q_{i}=\left(\frac{2 E_{i}}{R_{i}}\right)^{12} \sin \theta \quad d q_{i}=\left(\frac{2 E_{i}}{R_{i}}\right)^{1 / 2} \cos \theta d \theta \\
& \therefore I_{i}=\frac{E_{i}}{\pi} \frac{\pi_{k}}{k_{i}} \int_{T} \cos ^{2} \theta d \theta=\frac{E_{i}}{\sqrt{k}: / m}
\end{aligned}
$$

$H W H 3, P .7$
7. The reduced form of the variational principle (by Maupertuis) uses the abbreviated action:

$$
S_{0}=\int p d q \quad \text { or } \quad I=\frac{1}{2 \pi} \int p d q
$$

We found that I is an adiabatic invariant, that is, $\frac{d I}{d t}=0$ for fixed E and λ, where $\lambda(t)$ is a slowly vary ing parameter such that:
$\frac{\lambda}{\lambda}<\frac{1}{T}$ and T is a fast time scale
For the harmonic oscillator we can have the frequency, $\omega(t)$, slowly varying:

$$
L=\frac{1}{2} m \dot{x}^{2}-m \omega^{2}(t) x^{2}, \quad H=\frac{p^{2}}{2 m}+\frac{n}{2} \omega^{2}(t) x^{2}
$$

Note we still have $p=\frac{\partial L}{\partial \dot{x}}=m \dot{x}$. Over the fast time scale $T=\frac{2 \pi}{\omega}$:

$$
I=\frac{1}{2 \pi} \oint p d x=\frac{1}{2 \pi} \int_{t}^{w+T}(m \dot{x})\left(\dot{x} d \dot{t}^{\prime}\right)
$$

At fixed $\omega(t)$, ariuming $x($ thus $\dot{x})$ periodic in ω :

$$
\frac{d I}{d t}=\frac{m}{2 \pi} \int_{+}^{t+T} \frac{d}{d t^{\prime}}(\dot{x})^{2} d t^{\prime}=\left.\frac{m}{2 \pi} \dot{x}^{2}\right|_{t} ^{t+T}=0
$$

At fixed ω \{ $x=a \cos (\omega t+\varphi)$ and:

$$
I=\frac{m}{2 \pi} \int_{+}^{t+T} \omega^{2} a^{2} \sin ^{2}\left(\omega t^{\prime}+\varphi\right) d t^{\prime}=\frac{m \omega^{2}}{2 \pi} \frac{\pi}{\omega}=\frac{m \omega a^{2}}{2}
$$

but $E=\frac{1}{2} m \omega^{2} a^{2}$, so also $I=\frac{E}{\omega}$. So:

$$
I \omega(t)=E(t)=\frac{1}{2} m \omega^{2} a^{2} \text { thus } a=\frac{2 I}{m \sqrt{\omega}}=\frac{C}{\sqrt{\omega}}
$$ where c is a constant.

Thus, a reasonable solution to the problem of varying $\omega(t)$ should have the amplitude as $\omega^{-1 / 2}$. Indeed, we can apply the $W K B$ method, since
$\frac{\omega}{\omega}\left|=|\dot{T} / T|=\left|\frac{\partial T}{\partial t} \cdot \frac{\omega}{\partial \pi}\right| \sim O(\varepsilon \omega) \ll \frac{1}{T}\right.$ with ε a small parameter
So the solution is the same except we replace the space variable, x, with time, t :

$$
\begin{aligned}
& x^{ \pm}(t)=\frac{c_{ \pm}}{\sqrt{\omega(t)}} e^{ \pm i \int \omega(t) d t} \text { and generally} \\
& x=\frac{1}{\sqrt{\omega(t)}}\left(c+e^{+i \int \omega(t) d r}+c_{-} e^{-i \int \omega(t) d t t}\right)=\frac{c}{\sqrt{\omega(t)}} \cos \left(\int \omega(t) d t+\varphi\right)
\end{aligned}
$$

Either form that is used the amplitude has a factor of $\omega(t)^{-1 / 2}$, so:

$$
\begin{aligned}
& \frac{d \bar{I}}{d t}=\frac{d}{d t}\left(\frac{\bar{E}}{\bar{\omega}}\right)=\frac{d}{d t}\left(\frac{\frac{1}{2} m \bar{\omega}^{2} a^{2}}{\bar{\omega}}\right) \\
&=\frac{d}{d t}\left(\frac{\frac{1}{2} m \bar{\omega}^{2}(c / \omega L}{\bar{\omega}}\right)=\frac{d}{d t}\left(\frac{1}{2} m c \frac{\omega^{2}}{\psi^{2}}\right) \\
&=O(\bar{E}, \bar{I}, \bar{\omega} \text { denotes average from } t \text { to }(t+T)) \\
& \text { and } \omega(t) \approx \bar{\omega}
\end{aligned}
$$

Above $C, C \pm$, were constants determined by initial conditions. mare directly:

$$
I=\frac{1}{2 \pi} \oint^{p} p d q=\frac{m}{2 \pi} \int_{t}^{++T} \dot{x}^{2} d t \approx \frac{m}{2 \pi} \int_{t}^{t+T}\left[\frac{\dot{\omega}}{\omega^{3 / 2}} x-\frac{c}{\omega^{1 / 2}} \cdot \omega \sin \left(\int_{0}^{t^{\prime}} \omega d t^{\prime \prime}+\varphi\right)\right]^{2} d t^{2}
$$

Use that ω is slowly varying:

$$
I \approx \frac{m c^{2}}{2 \pi}\left(\frac{\omega}{\omega^{1 / h}}\right)^{2} \cdot \int_{t}^{++\pi} \sin ^{2}\left(\bar{\omega} t^{\prime}+\varphi\right) d t^{\prime}=\frac{m c^{2}}{2 \pi}(\omega) \cdot \frac{\pi}{\mu}=\frac{m c^{2}}{2}(\text { constant })
$$

Prob 8.
Point particles in box with sides 6 :

Our goal is to use adiabatic theory to find the relation between pressure and volume when the walls are mong.
Start with the stationary case:
Assume particles are either moving in x, y or z direction, and that its the same number of particles in each direction.
To find pressure we use $P=\frac{F}{A}$
The force is given by $F=\frac{\Delta p}{\Delta t}$.
Δ_{p} is the change in momentum due to the collision, while ot is the time between each collision.

Every of particles in x-diextion:

$$
E_{x}=\sum_{k} \frac{1}{2} m_{k} v_{k x}^{2}
$$

Change in moment due to collision.

$$
\Delta_{p}=\sum_{k} 2 m_{k} v_{k x}
$$

Time between collision for one particle:

Force on wall is then given by:

$$
F_{x}=\sum_{k} \frac{2 m_{k} v_{k x}}{2 L / v_{k x}}=\frac{2}{L} \sum_{k} \frac{1}{2} m_{k} v_{k x}^{2}=\frac{2 E_{x}}{L}
$$

Since we asumed $\frac{1}{3}$ of the particles to move in x direction $E_{x}=\frac{1}{3} E$

Whe can then find the pressure:

$$
P=\frac{F_{x}}{A}=\frac{2 E_{x}}{L^{3}}=\frac{2}{3} \frac{E}{V}
$$

Now lets take the moving walls into account:

We asume that the rate of change of the walls are much slower tan the rate of collision. This means ne kan use adiabatic theory!
Adiabatic invariant: $I=\oint \frac{p d y}{2 \pi}$
We look at motion in the x direction. Since this is free particles the countur integral reduces to a line integral in two directions:

$$
2 \pi \cdot I=\int_{0}^{L} p_{x} d x+\int_{L}^{0}\left(-p_{0}\right) d x=2 p_{x} L=2 L \sqrt{2 m E_{x}}=\text { cons }
$$

We can then simplify this to $E_{x} l^{2}=$ const Taking the differential yrecsls:

$$
d E_{\alpha} l^{2}+2 L E_{x} d l=0 \Rightarrow d E_{x}=-\frac{2}{l} d l
$$

Since the variation is slow we can assume that $P=\frac{2}{3} \frac{E}{V}=\frac{2 E_{x}}{V}$ still holds

This allow us to write

$$
d E_{x}=-\frac{2 P V}{2 L} d L
$$

We have $V=L_{x} L_{y} l_{z}, d V=l_{y} l_{z} d l_{x}=l^{2} d z$

$$
\Rightarrow \quad D E=-\frac{P V}{V}+V-P A V
$$

This result agrees with the first law of thermodynamics for an adia batic expansion?

1.)

a.

Question: Construct from first principles the hamiltonian fore a 1D harmonic oscillator of mass m and spring constant k.

The kinetic energy is given by:

$$
T=\frac{1}{2} m \dot{q}^{2}
$$

While the potential energy is:

$$
U=\frac{1}{2} k q^{2}
$$

As we know. $L=T-U$ and $H=p \dot{q}-L$, leading to:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2} \tag{1}
\end{equation*}
$$

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega q^{2}
$$

b.

Question: Determine the constant C such that $Q=C(p+i m \omega q)$ and $P=$ $C(p-i m \omega q)$ define a canonical transformation.

There are multiple ways to show that a transformation is canonical, here I use the fact that Poisson brackets are conserved on canonical transforms.

$$
\begin{gathered}
{[p, q]=[P, Q]} \\
{[p, q]=\frac{\partial p}{\partial q} \frac{\partial q}{\partial p}-\frac{\partial q}{\partial q} \frac{\partial p}{\partial p}=-1} \\
{[P, Q]=\frac{\partial P}{\partial q} \frac{\partial Q}{\partial p}-\frac{\partial Q}{\partial q} \frac{\partial P}{\partial p}=(-i m \omega C) C-C(i m \omega C)=-2 i m \omega C^{2}}
\end{gathered}
$$

So we have:

$$
\begin{aligned}
& -2 i m \omega C^{2}=-1 \\
& C=\sqrt{\frac{1}{2 i m \omega}}
\end{aligned}
$$

c.

Question: What is the generating function $S(q, P)$ for this transformation? We have, by definition:

$$
\begin{align*}
& p=\frac{\partial S(q, P, t)}{\partial q} \tag{2}\\
& Q=\frac{\partial S(q, P, t)}{\partial P} \tag{3}
\end{align*}
$$

So we can write:

$$
\begin{gather*}
p=i m \omega q+\frac{P}{C}=\frac{\partial S}{\partial q} \\
S=\int\left(i m \omega q+\frac{P}{C}\right) d q=\frac{P q}{C}+\frac{i m \omega}{2} q^{2}+g(P) \tag{4}
\end{gather*}
$$

Where $g(P)$ is some function depending only on P. Taking the derivative of Eq 4 with respect to P

$$
\frac{\partial S}{\partial P}=\frac{q}{c}+\frac{d g}{d P}
$$

And we know that the above should be equal to Q by Eq 3. So:

$$
\begin{gather*}
\frac{q}{c}+\frac{d g}{d P}=C\left(2 i m \omega q+\frac{P}{C}\right) \\
\frac{d g}{d P}=\frac{q}{C}-\frac{q}{C}+P \\
g(P)=\frac{1}{2} P^{2} \tag{5}
\end{gather*}
$$

Finally, putting it all together:

$$
S(q, P)=\frac{1}{2} P^{2}+\frac{q P}{C}+\frac{q^{2}}{4 C^{2}}
$$

d.

Question: Find Hamilton's equations of motion for the new variables
We know that our new Hamiltonian, $\tilde{H}(Q, P, t)$, if related to our coordinates P and Q by:

$$
\begin{align*}
\dot{Q} & =\frac{\partial \tilde{H}}{\partial P} \tag{6}\\
\dot{P} & =-\frac{\partial \tilde{H}}{\partial Q} \tag{7}
\end{align*}
$$

But we can write \dot{Q} and \dot{P} as:

$$
\begin{align*}
\dot{Q} & =C(\dot{p}+i m \omega \dot{q}) \tag{8}\\
\dot{P} & =C(\dot{p}-i m \omega \dot{q}) \tag{9}
\end{align*}
$$

and using our hamiltonian, $H(q, p, t)$ to derive \dot{q} and \dot{p} :

$$
\dot{Q}=C\left(-m \omega^{2} q+i m \omega \frac{p}{m}\right)=C i \omega(p+i m \omega q)=i \omega Q
$$

Thus we can integrate the above equation to arrive at:

$$
\begin{equation*}
\tilde{H}(Q, P, t)=i \omega Q P+g(Q) \tag{10}
\end{equation*}
$$

where again $g(Q)$ is some function depending only on Q. Switching over to \dot{P} :

$$
\begin{gathered}
\dot{P}=C(\dot{p}-i m \omega \dot{q})=-i \omega P=-\frac{\partial \tilde{H}}{\partial Q} \\
-\frac{\partial \tilde{H}}{\partial Q}=-i \omega P+\frac{\partial g}{\partial Q}
\end{gathered}
$$

Thus $g(Q)=0$ and we can see that our new Hamiltonian is given by:

$$
\tilde{H}(Q, P, t)=i \omega Q P
$$

Using this Hamiltonian, we can trivially see that:

$$
\begin{gathered}
\dot{P}=-i \omega P \\
\dot{Q}=i \omega Q
\end{gathered}
$$

We can integrate these equations to find:

$$
\begin{gather*}
Q(t)=Q_{0} \exp \left(i \omega t+\phi_{1}\right) \tag{11}\\
P(t)=P_{0} \exp \left(-i \omega t+\phi_{2}\right) \tag{12}
\end{gather*}
$$

or, substituting in for our original coordinates:

$$
\begin{gather*}
p(t)=\frac{1}{C}\left[Q_{0} \exp \left(i \omega t+\phi_{1}\right)+P_{0} \exp \left(-i \omega t+\phi_{2}\right)\right] \tag{13}\\
q(t)=\frac{1}{2 i m \omega C}\left[Q_{0} \exp \left(i \omega t+\phi_{1}\right)-P_{0} \exp \left(-i \omega t+\phi_{2}\right)\right] \tag{14}
\end{gather*}
$$

1.)
a.) Pondermutine Force:
$\frac{\dot{\lambda}}{\lambda} \gg \Omega$ where Ω is motweal frequency
We make the assumption that the motion, $x(t)$, can be separated into a fast pins slow component, $\bar{x}+\tilde{x}$. Then the key part comes by averaging over the fast period. This allows us to find mean-feeld equations and a form for the effective potential.

Key Features:
New positions of stabititylinstubility, range of diving frequercess fur which these positions of equilibrium exist.

The canomial example:
Pendulum with a driven (oscillating) support. Inverted pendulum
Summery of result:

$$
\begin{aligned}
& U_{\text {est }}=U+\frac{1}{4 m w^{2}}\left(f_{1}^{2}(y)+f_{2}^{2}(y)\right) \\
& \frac{d U_{\text {est }}}{d y}=0 \text { \& } \frac{d^{2} U_{\text {est }}}{d y^{2}}>0 \text { for stabilization }
\end{aligned}
$$

b.) Parametric Instabritityi

$$
\frac{\dot{\lambda}}{\lambda} \simeq 2 \Omega
$$

We assume we can trent the solution as fast oscillator termmodulated by a slowly growing amplitude. I.e. $x(t)=a(t) \sin (\omega t)+b(t) \cos (\omega t)$ where $a(t), b / t)$ very slowly with respect to the frequency w. Also driving near nasonamice.

We essentially treat the solution as a small puturbition from the standard, nom. forcing solution. If the driving amplitude is small component to the dimensions of the system, thees pestubution is allowed.

Key Fenturs:
Growth equation of the slowly varying amplitudes allow fou both stable and diresgent growth. $\omega_{0}^{2} h^{2}$ vs \in_{L}^{2} misnontich So sufficiently dose to resonance L A aptitude of pounnetic say Leads to grunt

9,) continue α
There is a reange, or rather a threshold, for instability.
Example:
Driven oscillator with sinnsotinlly varying frequent. $\left.\ddot{x}+w_{0}^{2}\left[1+h \cos \left(2 m_{0}+t\right) t\right)\right] x=0$
Summary of example:
Growth perimeter $S^{2}=\frac{\omega_{0}^{2} h^{2}}{16}-\frac{\epsilon^{2}}{4}=\frac{1}{4}\left(\frac{\omega_{0}^{2} h^{2}}{4}-\epsilon^{2}\right)$
For $\epsilon^{2} \gg \frac{w_{0}^{2} h^{2}}{4}$, stable oscillation.
c.) Adiabatic Invorinnee:

$$
\frac{\dot{\lambda}}{\lambda} \ll \Omega
$$

We assume that the variation of λ is small over the natural period. Compared to the mutual frequency, the parameter λ is taken to be cost.

The leverage here is time scale separation, we can break the ara age

$$
\frac{\partial \bar{E}}{\partial t}=\frac{\partial H}{\partial \lambda} \frac{\partial \lambda}{\partial t}=\frac{\partial H}{\partial \lambda} \frac{\partial \lambda}{\partial t} \quad \text { or } \frac{\partial \bar{E}}{\partial t}=\frac{\partial \lambda}{\partial t}\left\langle\frac{\partial H}{\partial \lambda}\right)_{\text {cycle }}
$$

By taking $\lambda \approx$ cost over one period, we ensue "phase" symmetry \Rightarrow conserved charge. Awraging owe the period of the motion, smooths the variations in E.

Key Features:
For an fixed erigy, and sou slowly varying λ, there is an adiabatic invariant $I=\oint_{E, \lambda}^{2}+\rho d q=$ worst Conservation of phase space area!

Example:
Slowly varying natural frequency of an oscillator.

$$
H=\frac{1}{2 m} p^{2}+\frac{1}{2} m w^{2} q^{2}
$$

Line Sunny:

$$
\begin{aligned}
& \text { Sump wy: } \\
& I=\oint_{E, \omega} \frac{1}{2 \pi} p l q=\text { cons }=\frac{1}{2 \pi} \nVdash\left(\sqrt{\frac{2 E}{\mu \omega^{2}}}\right)(\sqrt{2 \mu E})=\frac{E}{\omega}
\end{aligned}
$$

$I=\frac{E}{\omega}$ zonst so Energy is proportional to frequent
a.) continued
d.) Anharmomic Oscillator

Expansion perruneter $\epsilon \ll \omega_{0}^{2}$
We assume we can write the solutions $x^{(t)}$ and w as a series of successive approximations

$$
\begin{array}{ll}
x(t)=x^{(0)}+x^{(1)}+x^{(2)}+\cdots & x^{(i)} \text { is } \theta\left(\epsilon^{i}\right) \\
w=w_{0}+w^{(1)}+w^{(2)} & w^{(i)} \text { is } \theta\left(\epsilon^{i}\right)
\end{array}
$$

The main issue here is the we have a beat phenomenon from the x^{3} form, thus we can have resonance and thess a divergence. The key :s to use the expansion and choose $w^{(1)}, w^{(2)}$, etc so the resonant berms dissuppent. [Reductive perturbation]

Key Feature:
Non-linear frequency shaft!
Example:
Duffing eqn: $\ddot{x}+w_{0}^{2} x+\beta x^{3}=0$
Summary:
A non-linear freq shift occurs, $\omega=\omega_{0}+\frac{3 a^{2} z}{8} w_{0}$

Table Summary:

9) continued

